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Abstract

The e�ect of a superimposed shear stress on the axial compressive strength of aligned ®ber composites is
investigated through a combination of experiments and analysis. Experiments were conducted on ¯at coupons using
a custom biaxial testing facility. Shear and compression were found to interact strongly. The interaction failure

envelope follows approximately a linear trend along the line joining the critical stress at zero shear on one axis and
the shear strength on the other. The 2-D and 3-D micromechanical models used previously to predict the
compressive strength are modi®ed to include the shear. In the models the composite has a sinusoidal imperfection
which is uniform across the microsection width. The imperfection characteristics are chosen so that the calculated

critical stress at zero shear corresponds to the measured strength. The models are shown to capture well the
interaction between shear and compression. Calculated failure envelopes are in good agreement with the
experimental results. For all combinations of shear and compression considered, deformation localizes into a narrow

band of highly bent ®bers after the critical state. The band initially is normal to the axial load but broadens and
rotates as the solution is followed deeper into the postfailure regime as it did for pure compression. Important
aspects of proper testing and modeling are discussed, and recommendations are given for design including a critical

review of a simpler model in which the ®bers do not deform. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is now commonly accepted that the failure of aligned ®ber composites is due to buckling of the
®bers in the inelastic matrix. This was ®rst recognized by Argon (1972) and later by Budiansky (1983).

They observed that even in unidirectional material the ®bers have small misalignments and under axial
compression the matrix can develop shear. Typical polymeric matrices used in advanced composite
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materials yield at relatively low shear stresses, and, as a consequence, the composite shear response is
also nonlinear with relatively low yield stress. For ®ber misalignments of the order of one to two
degrees, the material can yield in shear at compressive stresses of the order of 50% of the tensile
strength. The reduction in shear modulus caused by this yielding causes shear buckling of the ®bers.

Kyriakides et al. (1995) and Kyriakides and Ru� (1997) idealized the composite as a two-dimensional
solid with alternating layers representing elastic ®bers and inelastic matrix with an initial waviness. The
properties of the constituents were selected so that the shear response of the model material matched
that of an AS4/PEEK composite. They then showed that when a representative microsection of this
model material is compressed it develops a limit load instability essentially for the reasons given by
Argon and Budiansky. Following the limit load, deformation was shown to localize in a narrow inclined
band crossing the specimen. The ®bers inside the band bend and rotate very much like in kink bands
reported from compressive failure experiments.

In a similar e�ort, Hsu et al. (1998) considered a model composite with circular elastic ®bers with a
hexagonal distribution inside an inelastic matrix. The model composite was again assigned the same
shear response as the actual material. Under compression this model behaved in a manner similar to the
two-dimensional model developing a limit load followed by localized bending in well de®ned narrow
bands across the microsection.

Based on these ®ndings it was concluded that the most appropriate version of the original model of
Budiansky mentioned above (which was taken much further in Budiansky and Fleck, 1993) is the zero
kink band angle version. In the simplest version of the model the ®bers are assumed to be inextensional
and uniformly inclined to the line of loading by a small angle y0 as shown in Fig. 1. Simple equilibrium
considerations of the element relate the applied stress (s) to the induced shear (g) by

s � t�g�
y0 � g

�1�

Fig. 1. Idealized composite used in the straight ®bers model.
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where t�g� is the nonlinear response of the composite in shear (g is assumed to be small). (Eqn (1) was
also reported in Chatterjee and McLaughlin, 1979 and was used by Schapery, 1992). The material
nonlinearity in the numerator and the geometric nonlinearity in the denominator interact to cause a
limit load in s at some value of g. This limit load is taken to represent the strength of the composite.

Hsu et al. (1998) compared strength predictions from eqn (1) with those from the two- and three-
dimensional numerical models in which the sinusoidal imperfection was assumed to be uniformly
distributed and to have an amplitude corresponding to y0. It was shown that, provided the shear
responses in the three models are the same, the predicted strengths are similar. For misalignment angles
less than one degree, the extensionality of the ®bers plays a role and, as a result, eqn (1) overestimates
the strength.

Budiansky and Fleck (1993) showed that shear applied simultaneously with axial compression can
reduce the strength of aligned composites quite signi®cantly (see also Slaughter et al., 1993). Jelf and
Fleck (1994) con®rmed this strong interaction in experiments on pultruded ®ber-epoxy (EXAS HSI/DX
6002) composite tubes tested under combined axial compression and shear. Here we revisit the problem
and analyze it through extended versions of the 2-D and 3-D models used in Hsu et al. (1998) for pure
axial compression and by a version of the straight ®ber model of Budiansky and Fleck. It will be shown
that for this case also the numerical results support that the most appropriate version of the straight
®ber model of Budiansky and Fleck is one with zero kink band inclination. The models are evaluated by
comparing the predicted interaction failure envelopes with new experimental results on the same AS4/
PEEK composite used in our previous work.

2. Experiments

2.1. Experimental set-up

The e�ect of shear on the compressive response and failure was ®rst investigated experimentally. The

Fig. 2. Side view of device used for combined compression-shear loading of composite specimens.
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material used was the same AS4/PEEK unidirectional composite used in our previous studies in order to
exploit the existing material characterization data essential for the analyses that follow. The cleanest
experimental method for applying pure shear is twisting of thin-walled tubes. Our composite is in the
form of a 0.75 in (19 mm) plate which limited the size of tubes we could make to impractically small
diameters. For this reason, we opted for a compromise setup involving a 2 � 2 � 0.125 in
(50.8 � 50.8 � 3.18 mm) square plate compressed while simultaneously sheared by end loads. The plate
is tested in a special device shown schematically in Fig. 2 developed for measuring the inelastic behavior
of materials under compression and shear. In such tests, edge e�ects and axial stress non-uniformity are
limited by employing a relatively long strip of material much like in a rail shear test. In the present tests,
the specimen aspect ratio could not be too large in order to ensure that an inclined kink band initiated
from one of the plate free edges would stay within the test section on reaching the other free edge.

The device is mounted onto a universal testing machine which applies the compression. Shear is
applied by a one inch stroke, 10 kip (44 kN) capacity hydraulic actuator mounted onto a sti� carrier
plate which in turn is attached to the crosshead of the testing machine. The top of the specimen is
attached via a special end plate to the load cell of the axial testing machine which is very sti� under a
side load. A similar mounting plate at the bottom of the specimen is attached to a linear bearing
connected to the horizontal actuator as shown in the ®gure. The bearing allows horizontal motion of the
bottom of the specimen with minimal friction even at high axial loads. The horizontal load is monitored
by a load cell connected between the actuator and the bearing; the horizontal displacement (n* ) is
monitored by an LVDT displacement transducer. Both axes of loading can be operated in either load or
displacement control. The independence of control for the shear and the axial loads allows arbitrary
choice of path in the biaxial stress (tÿ s) or strain (gÿ e) space.

The top and bottom ends of the specimen are bonded with a high strength adhesive (Hysol XEA
9359.3) to 0.4 in (10 mm) thick steel plates as shown in Fig. 3. The thickness of the adhesive is 0.007 in
(0.178 mm). A ®llet with a radius of approximately 0.04 in (1 mm) is left at the edge of the adhesive to
reduce the local stress concentration. Prior to bonding, the specimen is roughened in the bond area with
sandpaper and cleaned. A special aligning jig is used during the bonding process to ensure that the
assembly consisting of the mounting plates, the specimen and the end plates are kept aligned. One of the

Fig. 3. Details of mounting for shear-compression specimen.
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objectives of the tests was to establish any di�erences induced by shear to the characteristics of kink
bands that develop as the material fails. As in our previous work (Vogler and Kyriakides, 1997), this
was accomplished by laterally con®ning the plate by clamping on either side of it 0.4 in thick, hardened
steel plates with lubricated ground surfaces. The clamping force applied was relatively small to keep
friction to a minimum.

When assembled, the specimen has a test section of 1.2 � 2 � 0.125 in (30 � 50 � 3.18 mm). The
aspect ratio of the test section is relatively small and, as a result, some stress nonuniformity develops
due to the free edges. An alleviating factor is the fact that due to the very anisotropic properties of such
composites the shear stresses that are applied are relatively small compared to the axial stresses. The
axial strength of the material is approximately 175 ksi (1.2 GPa). The maximum shear stress the
material can sustain is approximately 12 ksi (83 MPa). At the maximum shear stress applied in the tests
of 10 ksi (69 MPa) the axial stress required to fail the material is of the order of 50 ksi (345 MPa). This
big di�erence in the two stresses means that the nonuniformity induced in the axial stress due to the
shear load is relatively modest compared to the mean axial stress and is limited to the neighborhood of
the free edges.

In addition to this nonuniformity of axial and shear stress, the specimen has some stress
concentrations at the interface of the bonded end-plates and the specimen. Finite element analyses of the
initial elastic stress states showed that the maximum stress concentration in the axial stress at the
corners of these discontinuities was of the order of 1.5. This, however, was limited to a very small local
zone. As a result of these limitations of the test set up, the biaxial strength envelope we present can be
considered to be a lower bound of the true material failure envelope.

2.2. Experimental results

Two di�erent loading histories were used in the biaxial tests. In the ®rst, the specimen was sheared to
a predetermined level under load control. Then, with the shear load ®xed, the specimen was compressed
at a prescribed constant displacement rate (_d=L) of 6.7 � 10ÿ5 sÿ1 (similar to rates used in uniaxial
compression tests in Kyriakides et al., 1995). This loading history will be designated as t4 e. In the
second loading path, the specimen was ®rst compressed to a predetermined value of axial stress and
then it was sheared under displacement control to failure at the rate _v�=L of 3 � 10ÿ5 sÿ1 while the axial
stress was kept ®xed. This will be designated as the s4 g loading path. The nonlinear shear response of
the composite is rate dependent and, as a result, the measured strength is a�ected to some degree by the
rate of loading (Vogler and Kyriakides, 1998). Here, for expediency, we examine failure only at one set
of low strain rates.

The strength of the material under pure uniaxial compression was established ®rst using conventional
cylindrical specimens with a uniform test section. They were tested in the axisymmetric set-up shown in
Fig. 1 of Kyriakides et al., 1995 which was designed to exhibit only modest stress-concentrations. The
strengths measured in three such tests were 171.7, 176.5 and 187.9 ksi (1.184, 1.1217, 1.296 GPa) which
are comparable to the values we reported in 1995 from tests on an earlier batch of the same material.
The compressive response exhibits a very mild nonlinearity. In this set-up, the specimen fails suddenly
and catastrophically with rupture usually occurring in the test section.

The shear response of the material is highly nonlinear (see Fig. 11 later). Depending on the test set-up
used and the integrity of the test specimen, shear strains as high as 10% have been achieved. At such
high strains the tangent modulus is quite small. We performed several shear tests on ®lament wound
thin-walled AS4/PEEK tubes. We also sheared several long strips, cut from the mother plate, in the
device shown in Fig. 2. While the shear responses were quite similar the failure strains varied from 4 to
10% as the specimens failed due to various experimental factors. The failure stress at the highest strain
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we recorded was 13.47 ksi (92.9 MPa); this will be taken to be a lower bound of the material strength in
shear.

2.2.1. t4 e path
We ®rst examine failure for the t4 e loading path. Tests were performed at shear stresses ranging

from 2 to 10 ksi (13.8±68.7 MPa). Shear was applied ®rst and ®xed at the desired level. The specimen
was then compressed at the constant displacement rate given above. Compression increased the shear
strain in the specimen further and, as a result, the horizontal displacement v� increased. At some value
of axial compression the initial shear coupled with the additional amount induced by compression
reduce the shear modulus to a level that allows inelastic collapse of the specimen. Since the shear stress
was prescribed, failure was sudden and catastrophic with the machine shutting o� when a certain value
of the displacement v� was exceeded. Failure resulted in the formation of one or two kink bands in the
test section. The kink bands initiated from one or both of the corners of the test section where the
highest stress concentrations are. The maximum axial stress recorded is taken to be the critical stress
(sC) for the particular value of shear stress applied.

Eleven such experiments were conducted. The critical stresses measured are plotted against the applied
shear stress (t1) in Fig. 4. The ®gure also includes the failure stresses from three uniaxial compression
tests and the ultimate shear strength of the composite in pure shear recorded in the other type of test
mentioned above. As expected from the work of Budiansky and Fleck (1993), the interaction between
the two stresses is strong resulting in the failure points falling along a nearly diagonal line joining the
strengths on the two axes (pure compression and pure shear). The trend of the results is also similar to
that of results reported in Jelf and Fleck (1994) from torsion-compression tests on a di�erent composite
(a small di�erence is that they performed several tests at the same value of shear and reported the
average compressive strengths measured thus reducing the scatter of their results).

Fig. 4. Comparison of compressive strength under shear loading from experiments and three models.
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The results exhibit some scatter which can be attributed to several factors. As discussed in Kyriakides
and Ru� (1997), our composite has two types of ®ber imperfections. The ®rst type is introduced in the
plane of the ply during the manufacture of the prepreg. The second is introduced during the curing of
the laminate in the stacking plane. Although both have distinct spatial distributions, neither has a
preferred orientation. The imperfections in the stacking plane were found to occur in `islands' which are
distributed throughout the mother plate. They were estimated to have diameters as large as 0.6 in (15
mm). When the plate is cut and sliced to extract our 2 � 2 � 0.125 in plate specimens, some of the
specimens may be free of this type of imperfection and others may su�er severely from it. This causes
variation in the apparent strength of individual specimens.

By examining the orientation of the ®bers on the surfaces of the specimens, we noticed that the
cutting can introduce an additional misalignment which is of the order of 0.58. The orientation of this
misalignment was not always recorded. Whereas in pure compression this additional misalignment
always causes a reduction in the strength, under shear, this misalignment will result in a reduction in
strength if oriented in the direction of the shear but will cause an increase in strength if oriented
opposite to the direction of the shear. This uncertainty in the orientation of this misalignment adds to
the scatter of the failure stresses in Fig. 4. We will illustrate this point further with the help of models in
x4. This type of imperfection should not be present in the pultruded material used by Jelf and Fleck. As
a result, they observed no signi®cant di�erence in the strength of tubes twisted one way and others
twisted to the same stress in the opposite direction.

2.2.2. s4 g path
Five tests were performed for this loading history in order to establish if this switch had any e�ect on

the strength. The specimens were ®rst compressed to a predetermined level ranging between
approximately 60 and 118 ksi (414±807 MPa). This stress was then kept at a constant level while the
specimen was sheared under displacement control. A typical set of results recorded in a test pre-
compressed to 60.6 ksi (418 MPa) is shown in Fig. 5. Figure 5a shows the axial sÿ d=L response and
Fig. 5b the tÿ v�=L response. The numbers in circles identify points on the responses with points on the
loading history shown in the inset of Fig. 5a. The axial stress±strain response is nearly linear and
relatively sti�. Its slope is smaller than E11 because the displacement includes deformation of various
parts of the testing set-up.

At the value of s is ®xed and the specimen is sheared by prescribing _v�. The shear response is seen
to exhibit signi®cant nonlinearity. Shearing tends to also shorten the specimen and d is seen to grow
between and . The tangent modulus gets progressively smaller and, eventually, a limit load is
reached. Because of the relatively sti� nature of the test set-up, part of the descending response could be
followed indicating that in this test failure was initially occurring in a controllable manner. The test was
interrupted at by suddenly removing the shear load. Kinking initiated at the corner of the plate and
progressed halfway across it at an inclination (b) of 118 to the x2-axis. As reported in Vogler and
Kyriakides (1997), a kink band of this type has associated with it a lateral de¯ection v (di�erence
between position of material above and below the kink band) which, to a ®rst order, can be
approximated by

v � w sin f �2�

where w is the width of the band and f is the rotation of the ®bers inside it. Since in this test v� is
prescribed, the development of the kink band is inhibited to some degree resulting in the behavior
observed.

The maximum shear recorded of 8.06 ksi (55.6 MPa) will be taken to be the critical shear stress at the
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axial stress of 60.6 ksi (418 MPa). The critical stresses from ®ve tests performed under this loading
history are plotted in the t1 ÿ sC plot in Fig. 4. Three of the points are somewhat lower than the
corresponding points from the t4 e loading path while the other two almost coincide with their
counterparts. In view of the scatter in the data, we conclude that the e�ect of loading path on the
critical stresses is small if any.

The characteristics of the kink bands developed under biaxial loading were examined. The kink
band inclinations varied from 10±158 which are somewhat lower than the values measured in similar
plate tests under pure compression. However, no clear trend of the e�ect of t on b was found. The
®ber rotation angles, f, inside the kink bands were generally smaller than the 308 values measured
after the load was removed in kink bands formed under pure compression. Here, f was on the order
of 208. Perhaps because of this smaller ®ber rotation, the ®bers bend and align themselves to the new
orientation of f, in the main, without breaking. This is illustrated in the micrograph in Fig. 6 where
the edge of such a kink band with straight ®bers on one side and rotated ®bers on the other can be
seen.

Fig. 5. Experimental results for a specimen tested under the s4 g loading path. (a) Axial stress-end shortening response; (b) shear

stress-horizontal displacement response.
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3. Models

3.1. Large-scale micromechanical models

We now modify the two- and three-dimensional micromechanical models of ®ber composites, used in the
past to calculate the compressive response and strength, to handle the needs of the combined loading
problem. In the two-dimensional model, the composite is idealized as an alternating array of ®ber and matrix
layers each of uniform thickness as shown in Fig. 7. The ®ber thickness (h ) is 7 mm. The thickness of the
matrix is chosen to match the 0.60 ®ber volume fraction of the material. The ®bers have a sinusoidal
imperfection along the x1-direction with amplitude a and wavelength 2l. For the purposes of the present
study, the imperfection will be uniform across the width of the microsection and is expressed as

v0 � a cos
px1

l
: �3�

In the three-dimensional model the ®bers are circular with diameter h (=7 mm) and are distributed in
a hexagonal arrangement in the matrix as shown in Fig. 8. The spacing of the ®bers (c ) is related to the
®ber diameter and volume fraction (uf) through

c � h

�����������
p

���
3
p

6uf

s
: �4�

The ®bers have the same sinusoidal imperfection in the x1 ÿ x2 plane as the 2-D model. Because of the

Fig. 6. Photomicrograph of a kink band formed in a specimen preloaded in compression to 60.5 ksi (417 MPa) and then sheared

to failure.
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Fig. 7. Geometry of composite microsection idealized as a 2-D solid of alternating ®bers and matrix with a sinusoidal imperfection.

Microsection loaded in compression and shear.

Fig. 8. Geometry of an idealized composite with a sinusoidal imperfection used in the 3-D FE model.
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periodicity of the problem, it su�ces to consider a representative slice of the material of width
���
3
p

c=2 on
whose lateral surfaces zero normal displacements are prescribed (see Fig. 9).

For pure axial loading the models were assumed to exhibit axial periodicity. With the addition of
shear, periodicity is no longer invoked. Instead, we extract microsections one-half period long (l) and
with width b de®ned by the number of ®bers nf used. In both models the ®bers and matrix are
discretized with ®nite elements. Details about the discretizations were given in Kyriakides et al. (1995)
and Hsu et al. (1998) and will not be repeated here. Axial loading is such that the top and bottom
surfaces of the microsections in Figs. 7 and 9 remain plane. Shear is applied to the top of the model by
prescribing the displacement v�0, .� of the center node (nodes for 3-D model). The displacement of other
nodes on these surfaces are related to the prescribed displacement by

v�0, . � � vi � vÿi
2

�5�

Fig. 9. Characteristic section of the idealized composite for the 3-D model loaded in compression and shear.
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where vi is the displacement of a node i to the right of the center, and vÿi is its counterpart to the left of
the center node. Because of the antisymmetry of the problem, it is possible to consider only half of the
microsections shown in Figs. 7 and 9.

The sides of both models are free. As was the case in the experiments, this causes some non-
uniformity in the axial stress as well as in the shear stress. This nonuniformity is reduced by making
the aspect ratio of the microsection relatively large. Again, in order not to inhibit the development of
localized bending along inclined bands, the aspect ratio could not be made too large. The
microsections analyzed have a half wavelength of l � 75h and are 90 ®bers wide. This yields an
aspect ratio �b=l� of approximately 2 for the 2-D model and of approximately 1.48 for the 3-D
model. The implications of these choices on the load nonuniformity will be examined in the results
section.

Key components of these models are the constitutive properties adopted for the ®bers and matrix. As
in the past, we assume the ®bers to be isotropic and linearly elastic with the properties given in Table 1.
The matrix is modeled as a ®nitely deforming J2-type elasto-plastic solid which hardens isotropically.
The properties of the matrix in each model are extracted from a torsion test on a ®lament wound thin-
walled tube of this material as follows. In each case a representative micromodel is loaded under pure
shear (layered for 2-D, hexagonal ®ber array in matrix for 3-D). The ®bers are assigned the properties

Table 1

Material properties of the composite and its constituents

(a)

APC-2/AS4 composite

E11 msi (GPa) E22 msi (GPa) G12 msi (GPa) v12 uf

18.62 (128) 1.533 (10.57) 0.84 (5.79) 0.3 60%

(b)

AS4 Fibers

Ef msi (GPa) vf

31.0 (214) 0.263

(c)

APC-2 (PEEK) Matrix

2-D Models 3-D Model

Em ksi (GPa) som ksi (MPa) vm Em ksi (GPa) som ksi (MPa) vm

893 (6.14) 11.9 (82.1) 0.356 594 (4.10) 9.5 (65.5) 0.356
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in Table 1. The matrix properties are calculated iteratively such that each model composite matches the
measured shear response (see Hsu et al., 1998). The two matrix stress±strain responses established in
this manner are shown in Fig. 10. For strains higher than 9% in the 2-D case and 11% in the 3-D
case, the stress±strain responses are assumed to be perfectly plastic. Fig. 11 shows a comparison of
the measured shear response and those from the models using the extracted stress±strain responses.
The one obtained from the 3-D model matches the stress±strain response measured in a uniaxial
tension test on neat PEEK up to a strain of approximately 1.5% but is sti�er for higher strains. The
inelastic behavior of this material is complex. For example, for neat material the stress±strain
responses in shear, tension and compression are such that they can not be reproduced by J2 isotropic
hardening plasticity. In addition, it seems that the crystallinity of the material in the composite is
di�erent than in neat form due to the presence of the ®bers. The calculation of strength under the
present loading conditions is strongly dependent on the shear response of the composite. As a result, we
consider the matrix stress±strain response extracted in the manner described above the most appropriate
for the purposes of the calculations that follow. At the same time, due to the limitations of the plasticity
model adopted, results far into the post-buckling regime will only be depended upon for qualitative
behavior.

Under pure compression the critical load was shown to be very sensitive to imperfections. As we will
see, this is also the case for compression in the presence of shear. One of the objectives of the present
e�ort was to examine if this type of model can reproduce the strong interaction between compression
and shear seen in the experiments. As mentioned above, the real composite has particular complex
distributions of ®ber imperfections which do not have a directional bias. In the models this will be
represented by an `equivalent' sinusoidal imperfection which has a direction bias. As a result, the shear
must be applied in the direction that makes it `cooperative' to the imperfection for it to cause a
reduction in strength. The amplitude of the imperfection is chosen in a calibration calculation using the
2-D model so that the predicted strength corresponds to the average of the three compression strengths
given above (178 ksiÐ1.228 GPa). The required amplitude was found to be a =0.87h. The same value
is used in the 3-D model.

Fig. 10. PEEK stress±strain responses used in the 2-D and 3-D models.
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3.2. Straight inextensional ®bers model

The numerical models described above include realistic representations of ®ber extensionality, ®ber
bending and matrix nonlinearity. In the past, the models were also used to study the e�ect of realistic
spatial distribution of ®ber imperfections on strength. In addition to yielding dependable predictions of
strength, they a�ord at least qualitative simulation of the localization process that leads to kink bands.
However, if the objective is limited to predicting the compressive strength of composites with a uniform
imperfection, the much simpler class of models of Budiansky (1983) and Budiansky and Fleck (1993) are
a viable alternative (see also Schapery, 1995). In the simplest of these models the ®bers are straight,
inextensional and uniformly inclined to the direction of loading as shown in Fig. 1. (In all numerical

Fig. 11. Comparison of measured composite shear response to numerical simulations for (a) the 2-D model and (b) the 3-D model.
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simulations of kink band formation, the bands have been found to initially form in a direction normal
to that of the applied stress. They become inclined at later stages of postfailure. It is for this reason that
we opt to use the zero kink band inclination version of this model.) Hsu et al. (1998) showed that when
t�g� is made to correspond to the measured shear response of the composite, the strengths predicted by
eqn (1) for yo > 0:58 are in very good agreement with those from our 2-D and 3-D numerical models.

Motivated by this, we examine the performance of the same model for compression in the presence of
shear as shown in Fig. 12. Straight-forward transformation of stresses to an orthogonal frame along and
normal to the ®bers, together with the assumption that both yo and the induced shear strain (g) are
small, results in the following relationship

s � t�g� ÿ t1
y0 � g

: �6�

This corresponds to eqn (62) in Budiansky and Fleck (1993) derived for zero kink band inclination (the
di�erence in the denominator is due to a rigid body rotation, g1, they applied to their model so that
compression starts with the ®bers aligned to the axial load). Once again t�g� is the shear response of the
composite and g is the shear strain due to both applied stresses.

We `calibrate' this model in the same way we calibrated the numerical models; that is, we choose an
equivalent value of y0 such that at zero shear stress the model yields the measured compressive strength
of 178 ksi (1.228 GPa). For the composite shear response shown in Fig. 11, this required y0 � 0:0351
(2.018). Provided the sinusoidal imperfections used in the bending ®bers models have long wavelengths
and relatively small amplitudes, the uniform initial inclination of this model can be approximated by

y0 1 pa
l

�7�

Fig. 12. Idealized composite used in the straight ®bers model loaded in compression and shear.
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Fig. 13. Responses for the 2-D and 3-D models. (a) Axial stress-end shortening response; (b) horizontal displacement-end shorten-

ing response.

Fig. 14. Deformed con®guration of the 2-D model corresponding to 1% end shortening for case shown in Fig. 13.
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(Kyriakides et al., 1995). For l � 75h and a =0.87h, eqn (6) yields y0 � 2:0888 which is in good
agreement with the result from direct calculation.

4. Predictions

4.1. Large-scale micromechanical models

4.1.1. A representative example
We ®rst consider results obtained using the 2-D and 3-D micromechanical models. We will use results

for the loading path t4 e with t1 � 4 ksi (27.6 MPa) as an illustrative example. The axial stress-
displacement responses yielded by the two models are shown in Fig. 13a. The responses exhibit the same
features as those from pure compression; they are initially sti� and almost linear with an elastic modulus
close to that of the actual composite. As the axial stress increases, the matrix is plasticized and, as a result,
the shear modulus is reduced. The biggest shear deformation and, correspondingly, the maximum
reduction in shear modulus takes place in the middle of the microsections shown in Figs. 7 and 9 where
the initial ®ber rotations are most severe. For the load and imperfection orientations chosen, the far ®eld
shear and the shear induced by the axial stress have an additive e�ect. At some value of axial stress
corresponding to the stress maximum of each response, the reduction in the shear modulus is high enough
that the axial stress can no longer be supported and the microsections start to collapse. The critical stresses
have values of 113.6 ksi (783.4 MPa) for the 2-D model and 119.2 ksi (822.1 MPa) for the 3-D model.

Subsequently, the responses exhibit the characteristic cusp-like behavior reported for pure
compression in our previous works. Riks' path-following technique is used to trace this part of the
response. The sequence of events that take place following the load maximum are similar to those
reported for pure compression. With the net axial stress dropping, the deformation localizes into a
narrow band in the center of each microsection. The band is initially horizontal but rotates and
broadens at higher values of axial displacement. The behavior is qualitatively similar in the two models
but the two responses deviate from each other as the details of the deformation are di�erent in the two

Fig. 15. Deformed con®guration of the 3-D model corresponding to 1% end shortening for case shown in Fig. 13.
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microstructures. Figs. 14 and 15 show the bands in the 2-D and 3-D microsections at d=L � 1%. Their
inclinations to the x2-axis are respectively 88 and 98. Both are approximately 18 smaller than the
corresponding inclinations for pure compression (see Fig. 7 in Hsu et al., 1998).

The net transverse displacements v�0� of the microsections are plotted against the axial shortening in
Fig. 13b. The variable v�0�=L represents a gross measure of the shear deformation in the microsection
although, as pointed out above, the shear strain at mid-height is larger than this value. The initial shear
strain induced by t1 is approximately 0.5%. As the axial stress increases the shear is seen to grow and,
at the critical stress, reaches values of approximately 1.93 and 1.96% respectively for the 2-D and 3-D
models. This is another illustration of the important role played by shear on failure. (Note that the
shear at mid-height is approximately 1% higher than these values for both models.)

In the previous section it was mentioned that the ®nite width and free edges of the microsections are

Fig. 16. Distribution of stress across the width of the 2-D model. (a) Axial stress in ®bers; (b) shear stress in the composite.
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expected to have some e�ect on the uniformity of the axial and shear stresses in the specimens. Fig. 16
shows plots of the average axial stresses in the individual ®bers just before the limit load is achieved
(marked with a � in Fig. 13a). The stresses shown correspond to the top surface of the microsection (x =0)
and to mid-height (x =37.5h ). The stresses are uniform in the interior but stress concentrations are seen to
develop in boundary layers a few ®bers wide on each free edge of the microsection. The stress concentration
is much more pronounced at the top of the microsection whereas at mid-height it is much smaller. At x =0
the boundary layers are approximately 5 ®bers wide whereas at x=37.5h they are only 2 ®bers wide.

The shear stress across the specimen at approximately the same axial locations is plotted in Fig. 16b
(t12 represents the shear stress suitably averaged over each ®ber and its adjacent matrix elements). The
shear at the top surface does not die to zero at the ends because this is where the shear load is applied

Fig. 17. Distribution of stress across the width of the 3-D model. (a) Axial stress in ®bers; (b) shear stress in the composite.
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and because of the way the stress is averaged. At the microsection mid-height the shear distribution is
more uniform in the interior and dies to zero in boundary layers approximately 5 ®bers wide.

Similar stress distributions extracted from the 3-D model are shown in Fig. 17. The more complex
microstructure of this model and its smaller width result in somewhat more extended boundary layers,
but otherwise the results are very similar to those in Fig. 16. The axial and shear stress distributions are
again markedly more uniform at the microsection mid-height.

As mentioned earlier, the choice of the width of the microsections in the present calculations was
driven by postfailure considerations. In the later stages of the failure process, the band of highly bent
®bers becomes inclined. In order not to interfere with this process the band should not run into the top
or bottom edges of the microsection. This imposes limitations on the microsection width. However, if

Fig. 18. Responses from the 2-D model for ®ve values of applied shear. (a) Axial stress- end shortening response; (b) horizontal

displacement-end shortening response.
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we limit the objectives of the analysis to just ®nding the critical stress, then no limitations on the
microsections width need be imposed. In view of this, we performed convergence studies on the e�ect
of nf on the calculated critical stress for t1 � 4 ksi (27.6 MPa). We found that doubling the width
increased the critical stress by approximately 1.5%. Clearly, the critical stress is associated with the
collapse of the whole specimen and, as a result, the edge e�ects do not play as big a role on its
value.

4.1.2. Summary of numerical results
Calculations of this type were performed at 2 ksi (13.8 MPa) increments of t1 in the range of 0 to 8

ksi (0±55.2 MPa) using both models. The axial stress-displacement responses from the 2-D calculations
are shown in Fig. 18a. The corresponding transverse displacement-axial displacement responses are
shown in Fig. 18b. The critical stresses and strains are listed in Table 2. The results clearly show that
the application of a far ®eld shear stress reduces drastically the critical axial stress. Indeed, the set of
axial responses shown in Fig. 18 are reminiscent of similar results for t1 � 0 but with the amplitude of
the initial imperfection as the parameter varied (e.g., see Fig. 23b in Kyriakides et al., 1995; Fig. 17 in
Kyriakides and Ru�, 1997; Fig. 11 in Hsu et al., 1998). Because the composite shear response is
nonlinear, the application of a constant shear stress is not quantitatively equivalent to a proportional
increase in the imperfection. However, a qualitative equivalence between the two variables can still be
claimed.

The same calculations were also performed with the 3-D model. The responses are similar to those in
Fig. 18 and will not be shown here. The critical stresses and strains obtained are listed in Table 4. The
small di�erence between critical stresses from the 2-D and 3-D models which was present for t1 � 0 is
maintained at all values of shear stress. However, the trend in the two sets of results is very similar
indeed. In the post-failure regime the bands of localized ®ber bending were similar to those seen in pure
compression with the general trend being that at a given value of d=L the inclinations of the bands in
the presence of far ®eld shear are somewhat smaller.

The calculated critical stresses are plotted against t1 in Fig. 4 together with the experimental
results. The predicted failure envelopes are almost linear and nearly parallel with the 2-D results
being somewhat lower. Overall, the predictions follow the trend of the experimental points, most of
which lie above the calculated envelopes. This agreement indicates that the models developed and
the method used to calibrate them are reliable tools for establishing such interaction failure
envelopes.

Table 2

Calculated critical stresses, axial strains and shear strains at various values of shear stressa

t1 ksi (MPa) sC ksi (MPa) ec%
vc�0�
L

%

2-D 3-D 2-D 3-D 2-D 3-D

0 178.4 (1230) 183.1 (1263) 0.91 1.01 1.17 1.27

2 (13.8) 145.5 (1003) 150.2 (1036) 0.77 0.85 1.54 1.58

4 (27.6) 113.6 (783) 119.2 (822) 0.63 0.70 1.93 1.96

6 (41.4) 83.7 (577) 90.5 (624) 0.51 0.58 2.37 2.5

8 (55.2) 55.7 (384) 63.9 (441) 0.40 0.49 2.92 3.33

ÿ4 (ÿ27.6) 254.3 (1754) Ð 1.265 Ð 0.635 Ð

a l
h
� 75,

a

h
� 0:87:
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Fig. 19. Response for 2-D model for the s4 g loading path. (a) Axial stress-end shortening response; (b) t1 ÿ v�0�=L and

t1 ÿ g�l=2� responses; (c) end shortening vs v�0�=L and g�l=2�.
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4.1.3. Other loading paths
Several calculations were also performed for the s4 g loading path. A representative set of results

from the 2-D model is shown in Fig. 19. The axial stress is ®rst increased to the level of 113.6 ksi (783
MPa) which corresponds to the critical stress calculated for the t4 e path for t1 � 4 ksi (27.6 MPa,
Table 4). The axial response (Fig. 19a) is essentially linear although the microsection shortens and
shears as shown in Fig. 19c. The stress is ®xed at this value and the specimen is then sheared by
incrementally applying a horizontal displacement to the top surface (v�0�) as described in x3a. The shear
stress that develops is plotted against the applied displacement in Fig. 19b. Plots of t1 and d=L vs the
shear strain at x � l=2 are also included in Fig. 19b and c (g�l=2� is the average shear strain over a
suitable domain in the center of the microsection). The shear stress is seen to rise nonlinearly to a
maximum value of 4.03 ksi (27.8 MPa) and then drop. As expected, the shear strain at x � l=2 is
signi®cantly higher than v�0�=L which is more representative of the average shear strain in the
microsection. The maximum shear achieved will be taken to be the critical failure stress. Thus, we see
that the switch in the order the two loads are applied has a very small e�ect on the critical combination
of t1 and s. This insensitivity to the loading path was also found to hold for other combinations of the
two stresses in the range of interest. For imperfections of smaller amplitude, the sensitivity to loading
path was found to increase somewhat but it remained too small to be of practical importance.

Following the shear stress maximum, deformation localizes into a distinct narrow band around the
mid-height of the microsection. As a result of this localization, the growth of shear strain inside the
band accelerates (see plots of g�l=2� in Fig. 19b and c). As before, the band starts horizontal but
broadens and rotates at higher values of v�0�. Fig. 20 shows the deformed microsection corresponding to
the points marked with a solid bullet on the three responses in Fig. 19. At this stage of the loading
history the band is 11.6h wide and has an inclination of 58. The main di�erence in events versus those of
the t4 e loading path is that here the applied displacement remains monotonically increasing; in other
words, the postfailure is more controllable. This characteristic enabled us to follow the loading history
beyond the shear stress maximum in some of the experiments. In the calculations the response can be
followed down to a zero shear stress. The experiments were usually interrupted before this occurred in
order to limit the extent of deformation in the kink bands that developed.

In summary, the interaction of the two stresses in the s4 g loading path is as follows. The initial

Fig. 20. Deformed con®guration of the 2-D model corresponding to points identi®ed by � in the responses in Fig. 19.
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axial stress causes an increase in the shear deformation in the area of the microsection with the highest
®ber misalignment. The axial stress is not su�cient to reduce the local shear modulus down to the level
that results in failure. The application of far ®eld shear continues the plasti®cation of the material and
the degradation in the local shear modulus. Eventually, at t1 � 4:03 ksi (27.8 MPa), the shear modulus
degrades enough that shear deformation no longer requires increase in shear stress and the microsection
starts to collapse. Unlike the alternate loading path, here, it can only collapse at the rate v�0� is
increased.

4.1.4. E�ect of imperfection bias
In all the calculations reported thus far the microsections were sheared in a sense that was

`cooperative' to the geometric imperfection of the ®bers (t1 > 0). In order to illustrate further the way

Fig. 21. Response of the 2-D model with positive and negative shear applied. (a) Axial stress-end shortening responses; (b) horizon-

tal displacement-end shortening responses.
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the ®ber imperfections and far ®eld shear interact, we conducted several calculations in which the
microsections were sheared in a sense that is `uncooperative' to the imperfection (t1 < 0). Results for
t1 �24 ksi (2 27.6 MPa) and for the same ®ber imperfection are compared in Fig. 21. Reversing the
direction of the shear stress increases the critical axial stress to 254.3 ksi (1.754 GPa) a level which is
nearly 2.4 times the critical stress for t1 � � 4 ksi and even 43% higher than the critical stress under
pure compression. This trend indicates that in practical applications in which the direction of shearing is
®xed, a purposely designed small uniform misalignment of the composite in the opposite sense to the
shear can have signi®cant strengthening e�ect. Or, equivalently, if the composite is misaligned in a
uniform manner, the application of a shear pre-load can increase the axial strength.

4.2. Straight inextensional ®bers model

The simple model of Budiansky and Fleck (1993) in the form of eqn (6) is now used to generate the
sC ÿ t1 failure envelope corresponding to the experiments and predictions in Fig. 4. The measured
shear response of the composite (Fig. 11) is used directly in t�g� in the numerator of the equation. The
composite is assumed to have a uniform equivalent inclination corresponding to the `calibration' value
of 2.018 (x3b). The failure envelope generated is shown in Fig. 4 (for values of t1 > 6 ksi the more
accurate version of this equation in which angles are not assumed to be small was adopted). The failure
envelope is almost coincident with the corresponding results generated by the 2-D FE model. This
demonstrates once more the soundness of the reasoning behind this model.

Eqn (6) and the 2-D FE model are now used to generate sC ÿ t1 failure envelopes for
misalignment angles �y0� of 18, 1.58 and 2.58. The results are shown in Fig. 22. The ®rst observation
is that the numerical results are almost coincident with the predictions. This was the case for pure
compression also provided the imperfection was larger than 18 (Hsu et al., 1998). The second
observation is that the failure envelope steepens as y0 decreases indicating a more severe sensitivity to
far ®eld shear.

Fig. 22. Compressive strength under shear loading for four values of initial imperfection.
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Finally, the model was used to analyze the strengthening e�ect that results from having t1 act
opposite to the imperfection. This is achieved by making y0 negative in eqn (6). Results for y0 � ÿ2:01
are included in Fig. 22. Equation (6) predicts that the strengthening e�ect seen for the case of t1 � ÿ4
ksi in Fig. 21 carries to all values of shear. In this case, results from the 2-D FE model deviate
somewhat from those of equation (6) for t1 > 5 ksi.

5. Conclusions

The e�ect of far ®eld shear on the compressive strength of aligned ®ber composites has been studied
through a combination of experiments and analysis. Thin plates of an AS4/PEEK composite with aspect
ratio of approximately 1.7 were tested to failure in a custom axial compression-shear testing facility.
Experiments were conducted under two loading paths, s4 g and t4 e. Shear interacts strongly with
compression producing a failure envelope which follows approximately a diagonal line joining the
strengths on the two axes of the failure envelope (pure compression and pure shear). No signi®cant
di�erence between the failure stresses from the two loading paths was observed. For the t4 e loading
path the specimens failed catastrophically leaving behind one or two inclined kink bands in the plane of
the plate. For the s4 g loading path failure initiated at a limit load in the shear stress. Because of the
displacement controlled manner in which the shear was applied in this loading path, events beyond the
shear maximum could be followed. Failure was again in the form of one inclined kink band. In both
sets of tests the inclinations of the kink bands ranged between 10±158. In the presence of far ®eld shear
the ®bers inside the kink bands mainly bent and rotated without breaking. By contrast, under pure
compression most ®bers broke at the edges of kink bands.

The 2-D and 3-D FE models we used in the past to simulate failure under pure compression were
extended to handle combined loading. The inelastic properties of the matrix were again selected such
that both models match the shear response of the actual composite. In both models the ®bers were
assumed to have a sinusoidal imperfection which is uniformly distributed across the microsections
analyzed. The amplitude of the imperfection was selected so that the models yield a critical stress for
pure compression which matches the mean of the measured values. The two models were found to
capture the interaction of the two stresses very well. The failure envelopes produced by both models
approximately bound the experimental results from below. As in the experiments, no signi®cant e�ect of
the loading path on the critical stresses was observed. The models were used to explore and understand
the postfailure events and the development of zones of localized ®ber bending.

The simplest straight ®bers model of Budiansky and Fleck (1993), calibrated in the same manner as
the numerical models, was used to predict the critical strength of our composite as a function of the far
®eld shear stress. The interaction failure envelope produced is in very good agreement with the
corresponding numerical predictions.

The calculations showed that for a unidirectional composite loaded in shear and compression, a small
uniform rotation in the opposite sense to the induced shear strain can have a signi®cant strengthening
e�ect. Equivalently, if a composite is uniformly misaligned to the direction of applied compression, the
application of a shear pre-load in a sense that reduces the misalignment angle can have a similar
strengthening e�ect.
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